Design Methods for Reconfigurable Filters: A Review

  • Sunil Raosaheb Gagare Department of Electrical and Electronics Engineering, Oriental University, Indore, Madhya Pradesh-453555, India
  • Dolly Reney Dept. of Electrical & Electronics Engineering, Oriental University, Indore, Madhya Pradesh-453555, India
Keywords: Reconfigurable Filters, Microwave filter, Wireless communication, Micro-strip filter design

Abstract

The new design methods of microwave filter has proved its significance for use in wireless communication systems. Modern wireless communication systems require microwave filters to have stringent specifications such as compact size, robust, conformal, light weight and more importantly cost effective while maintaining its electrical characteristics. Micro-strip filter design and reconfigurable filters present a better prospectus in this regards as it meets the specifications of modern wireless communication applications. Reconfigurable filters can provide control over parameters such as frequency, bandwidth and selectivity while reducing the need of number of switches sandwiched between electrical components. Different methods have provided a new dimension for designing microwave filters .In this article, we present a review on design methods for reconfigurable band-pass filters for next generation wireless technologies such as 4G, 5G and IOT.

References

[1] Zakaria, Z., Omar, N., Othman, A. R., Jawad, M., Ismail, A., Salleh, A., & Sam, W. (2013). Recent trends on dual-and triple-band microwave filters for wireless communications. Australian Journal of Basic and Applied Sciences, 7(10), 235-243.
[2] Hong, J. S. G., & Lancaster, M. J. “Microstrip Filters for RF/Microwave Applications”, John Wiley & Sons, Inc., 2001. doi:10.1002/0471221619
[3] Matthaei, G., Jones, E., Young, L., and Jones, E. M. T. (1964) “Microwave Filters, Impedance-Matching Networks and Coupling Structures”, New York: McGraw-Hill,.
[4] Hunter, I. C., Billonet, L., Jarry, B., & Guillon, P. (2002). Microwave filters-applications and technology. IEEE Transactions on Microwave Theory and Techniques, 50(3), 794-805.
[5] Swanson, D. G. (2007). Narrow-band microwave filter design. IEEE Microwave magazine, 8(5), 105-114.
[6] Kishor, J., Kanaujia, B., Dwari, S., et al. (2016). Narrow-Band Bandpass Filter for Wireless Communication System. Frequenz, 71(7-8), pp. 335-340. Retrieved 13 Jun. 2019, from DOI:10.1515/freq-2016-0090.
[7] Chen, X., Hong, W., Cui, T., & Wu, K. (2005). Substrate integrated waveguide (SIW) asymmetric dual-mode filter and diplexer. International journal of electronics, 92(12), 743-753.
[8] Zhu, X. C., Hong, W., Wu, K., Tang, H. J., Hao, Z. C., Chen, J. X., & Chu, P. (2013). Design and implementation of a triple-mode planar filter. IEEE Microwave and Wireless Components Letters, 23(5), 243-245.
[9] Wang, C. and Zaki, K. A. (2007). “Dielectric resonators and filters,” IEEE Microw. Mag., 8(5), 115–127.
[10] Tomassoni, C., Bastioli, S., & Snyder, R. V. (2015). Propagating waveguide filters using dielectric resonators. IEEE Transactions on Microwave Theory and Techniques, 63(12), 4366-4375.
[11] Kishor, J., Kanaujia, B. K., Dwari, S., & Kumar, A. (2016). Bandpass filter using dielectric resonator with transmission zeros. Microwave and Optical Technology Letters, 58(7), 1583-1586.
[12] Chen, J. X., Zhan, Y., Qin, W., Bao, Z. H., & Xue, Q. (2015). Novel narrow-band balanced bandpass filter using rectangular dielectric resonator. IEEE Microwave and Wireless Components Letters, 25(5), 289-291.
[13] Kumar, D., & De, A. (2013, December). Band pass filter design using microstrip line loaded with open stepped impedance structure. In IEEE MTT-S International Microwave and RF Conference (pp. 1-4). IEEE.
[14] Tiwary, A. K., & Gupta, N. (2011). Design of compact coupled microstrip line band pass filter with improved stopband characteristics. Progress In Electromagnetics Research, 24, 97-109.
[15] Al-Yasir, Y.I.A.; OjaroudiParchin, N.; Abd-Alhameed, R.A.; Abdulkhaleq, A.M.; Noras, J.M. Recent Progress in the Design of 4G/5G Reconfigurable Filters. Electronics 2019, 8, 114.
[16] Wang, X.; Wang, B.; Zhang, H.; Chen, K.J. (2007). A Tuneable Band-stop Resonator Based on a Compact Slotted Ground Structure. IEEE Trans. Microw. Theory Tech. 55, 1912–1918.
[17] Wang, Z.P.; Kelly, J.; Hall, P.S. Reconfigurable band-stop filter with wide tuning range. Electron. Lett. 2010, 46, 771–772.
[18] Guyette, A.C. (2010). Design of fixed- and varactor-tuned band-stop filters with spurious suppression. In Proceedings of the 40th European Microwave Conference, Paris, France, 28–30 September; 288–291.
[19] Huang, C.; Chen, N.; Tsai, H.; Chen, J.( 2013). A coplanar waveguide bandwidth-tuneable low-pass filter with broadband rejection. IEEE Microw. Wirel. Compon. Lett. 23, 134–136.
[20] Ab Wahab, N., Salleh, M., Khairul, M., Ismail Khan, Z., & Abd Rashid, N. E. (2014). Reconfigurable ring filter with controllable frequency response. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/671369.
[21] Ben Hammadi, A., Haddad, F., Mhiri, M., Saad, S., & Besbes, K. (2018). RF and microwave reconfigurable bandpass filter design using optimized active inductor circuit. International Journal of RF and Microwave Computer‐Aided Engineering, 28(9), e21550. https://doi.org/10.1002/mmce.21550
[22] Kataria, T. K., Osorio, L., Olvera Cervantes, J. L., Reyes-Ayona, J. R., & Corona-Chavez, A. (2018). Microfluidic Reconfigurable Filter Based on Ring Resonators. Progress In Electromagnetics Research, 79, 59-63.
[23] Bage, A., & Das, S. (2017). A frequency reconfigurable dual pole dual band bandpass filter for X-band applications. Progress In Electromagnetics Research, 66, 53-58. doi:10.2528/PIERL17010504
[24] Pelliccia, L., Cacciamani, F., Farinelli, P., & Sorrentino, R. (2015). High-$ Q $ tunable waveguide filters using ohmic RF MEMS switches. IEEE Transactions on Microwave Theory and Techniques, 63(10), 3381-3390. doi: 10.1109/TMTT.2015.2459689
[25] Athukorala, L., Rabbi, K., Panagamuwa, C., Vardaxoglou, J. C., Philippakis, M., & Budimir, D. (2010, November). Optically reconfigurable microstrip UWB bandpass filters. In 2010 Loughborough Antennas & Propagation Conference (pp. 617-620). IEEE.
[26] Cheribi, H., Ghanem, F., & Kimouche, H. (2013). Metamaterial-based frequency reconfigurable antenna. Electronics Letters, 49(5), 315-316.
[27] Dong, Y., Toyao, H., & Itoh, T. (2011). Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators. IEEE Transactions on antennas and propagation, 60(2), 772-785.
Published
2019-07-29
Section
Articles