Coagulation and Electrocoagulation Process for Dye Removal fromTextile Wastewater: A Review

Authors

  • Sweta Singh Chhattisgarh Swami Vivekanand Technical University, Bhilai-491107, Chhattisgarh
  • Ayush Ransingh Chhattisgarh Swami Vivekanand Technical University, Bhilai 491107

DOI:

https://doi.org/10.30732/RJET.20200901005

Keywords:

Coagulation, Electrocoagulation, Dye wastewater, Textile Wastewater, Electrolyte, Current density

Abstract

The synthetic textile dye wastewater using the azo dye, Congo red dye, methylene blue for laboratory experiment. The methods used in synthetic wastewater treatment conventional coagulation and electrocoagulation process. Electrocoagulation reactor two rods used aluminum and iron for anode and cathode, electrolysis time (2-30min), initial dye concentration (50 to 400mg/l),current density( 5,10,15 mA/cm2),room temp250C,mixing speed 500 rps. Chemical used in process Nacl, HCL, H2SO4, pH (6-8). Conventional coagulation process is used alum and Fecl3. The results show the electrocoagulation process is 90% wastewater removal compare to conventional coagulation.

References

[1] O. Dia, P. Drogui, G. Buelna, and R. Dubé, “Hybrid process, electrocoagulation-biofiltration for landfill leachate treatment,” Waste Manag., vol. 75, 2018, doi: 10.1016/j.wasman.2018.02.016.
[2] A. Y. Zahrim, C. Tizaoui, and N. Hilal, “Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review,” Desalination, vol. 266, no. 1–3, pp. 1–16, 2011, doi: 10.1016/j.desal.2010.08.012.
[3] A. Y. Zahrim, C. Tizaoui, and N. Hilal, “Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review,” Desalination, vol. 266, no. 1, pp. 1–16, 2011, doi: https://doi.org/10.1016/j.desal.2010.08.012.
[4] I. Khouni, B. Marrot, P. Moulin, and R. Ben Amar, “Decolourization of the reconstituted textile effluent by different process treatments: Enzymatic catalysis, coagulation/flocculation and nanofiltration processes,” Desalination, vol. 268, no. 1, pp. 27–37, 2011, doi: https://doi.org/10.1016/j.desal.2010.09.046.
[5] C. Thamaraiselvan and M. Noel, “Membrane processes for dye wastewater treatment: Recent progress in fouling control,” Crit. Rev. Environ. Sci. Technol., vol. 45, no. 10, pp. 1007–1040, 2015, doi: 10.1080/10643389.2014.900242.
[6] X. Huang, Y. Wan, B. Shi, J. Shi, H. Chen, and H. Liang, “Characterization and application of poly-ferric-titanium-silicate-sulfate in disperse and reactive dye wastewaters treatment,” Chemosphere, vol. 249, p. 126129, 2020, doi: https://doi.org/10.1016/j.chemosphere.2020.126129.
[7] C. Z. Liang, S. P. Sun, F. Y. Li, Y. K. Ong, and T. S. Chung, “Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration,” J. Memb. Sci., vol. 469, pp. 306–315, 2014, doi: 10.1016/j.memsci.2014.06.057.
[8] H. Zazou et al., “Treatment of textile industry wastewater by electrocoagulation coupled with electrochemical advanced oxidation process,” J. Water Process Eng., vol. 28, 2019, doi: 10.1016/j.jwpe.2019.02.006.
[9] M. Daud et al., “A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH)– Containing hybrids as promising adsorbents for dyes removal,” J. Mol. Liq., vol. 288, p. 110989, 2019, doi: 10.1016/j.molliq.2019.110989.
[10] D. Moussa, M. El-Naas, M. Nasser, and M. Al-Marri, “A comprehensive review of electrocoagulation for water treatment: Potentials and challenges,” j, vol. 186, 2017, doi: 10.1016/j.jenvman.2016.10.032.
[11] A. K. Verma, “Treatment of textile wastewaters by electrocoagulation employing Fe-Al composite electrode,” J. Water Process Eng., vol. 20, 2017, doi: 10.1016/j.jwpe.2017.11.001.
[12] K. Gautam, S. Kumar, and S. Kamsonlian, “Decolourization of Reactive Dye from Aqueous Solution using Electrocoagulation: Kinetics and Isothermal Study,” Zeitschrift fur Phys. Chemie, 2019, doi: 10.1515/zpch-2017-1044.
[13] R. Liang, E. Chiu, and S. L. Loke, “Secondary central nervous system involvement by non‐Hodgkin’s lymphoma: The risk factors,” Hematol. Oncol., vol. 8, no. 3, pp. 141–145, 1990, doi: 10.1002/hon.2900080305.
[14] C. An, G. Huang, Y. Yao, and S. Zhao, “Emerging usage of electrocoagulation technology for oil removal from wastewater: A review,” Science of the Total Environment, vol. 579. 2017, doi: 10.1016/j.scitotenv.2016.11.062.
[15] S. Bener, Ö. Bulca, B. Palas, G. Tekin, S. Atalay, and G. Ersöz, “Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study,” Process Saf. Environ. Prot., vol. 129, pp. 47–54, 2019, doi: 10.1016/j.psep.2019.06.010.
[16] L. Zhou, H. Zhou, and X. Yang, “Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment,” Sep. Purif. Technol., vol. 210, pp. 93–99, 2019, doi: https://doi.org/10.1016/j.seppur.2018.07.089.
[17] J. Dotto, M. R. Fagundes-Klen, M. T. Veit, S. M. Palácio, and R. Bergamasco, “Performance of different coagulants in the coagulation/flocculation process of textile wastewater,” J. Clean. Prod., vol. 208, pp. 656–665, 2019, doi: https://doi.org/10.1016/j.jclepro.2018.10.112.
[18] E. C. Lopes, S. C. R. Santos, A. M. A. Pintor, R. A. R. Boaventura, and C. M. S. Botelho, “Evaluation of a tannin-based coagulant on the decolorization of synthetic effluents,” J. Environ. Chem. Eng., vol. 7, no. 3, p. 103125, 2019, doi: https://doi.org/10.1016/j.jece.2019.103125.
[19] B. Tawakkoly, A. Alizadehdakhel, and F. Dorosti, “Evaluation of COD and turbidity removal from compost leachate wastewater using Salvia hispanica as a natural coagulant,” Ind. Crops Prod., vol. 137, pp. 323–331, 2019, doi: https://doi.org/10.1016/j.indcrop.2019.05.038.
[20] L. Tang et al., “Removal of active dyes by ultrafiltration membrane pre-deposited with a PSFM coagulant: Performance and mechanism,” Chemosphere, vol. 223, pp. 204–210, 2019, doi: https://doi.org/10.1016/j.chemosphere.2019.02.034.
[21] Y. Wu et al., “Membrane fouling in a hybrid process of enhanced coagulation at high coagulant dosage and cross-flow ultrafiltration for deinking wastewater tertiary treatment,” J. Clean. Prod., vol. 230, pp. 1027–1035, 2019, doi: https://doi.org/10.1016/j.jclepro.2019.05.139.
[22] C. Shen et al., “A crosslinking-induced precipitation process for the simultaneous removal of poly(vinyl alcohol) and reactive dye: The importance of covalent bond forming and magnesium coagulation,” Chem. Eng. J., vol. 374, pp. 904–913, 2019, doi: https://doi.org/10.1016/j.cej.2019.05.203.
[23] K. Guo, B. Gao, W. Wang, Q. Yue, and X. Xu, “Evaluation of molecular weight, chain architectures and charge densities of various lignin-based flocculants for dye wastewater treatment,” Chemosphere, vol. 215, pp. 214–226, 2019, doi: https://doi.org/10.1016/j.chemosphere.2018.10.048.
[24] Y. Liu et al., “Coagulation removal of Sb(V) from textile wastewater matrix with enhanced strategy: Comparison study and mechanism analysis,” Chemosphere, vol. 237, p. 124494, 2019, doi: https://doi.org/10.1016/j.chemosphere.2019.124494.
[25] W. L. Ang and A. W. Mohammad, “State of the art and sustainability of natural coagulants in water and wastewater treatment,” J. Clean. Prod., vol. 262, p. 121267, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.121267.
[26] C. C. Triques et al., “Influence evaluation of the functionalization of magnetic nanoparticles with a natural extract coagulant in the primary treatment of a dairy cleaning-in-place wastewater,” J. Clean. Prod., vol. 243, p. 118634, 2020, doi: https://doi.org/10.1016/j.jclepro.2019.118634.
[27] J. Garvasis, A. R. Prasad, K. O. Shamsheera, P. K. Jaseela, and A. Joseph, “Efficient removal of Congo red from aqueous solutions using phytogenic aluminum sulfate nano coagulant,” Mater. Chem. Phys., vol. 251, p. 123040, 2020, doi: https://doi.org/10.1016/j.matchemphys.2020.123040.
[28] S. Yang, W. Li, H. Zhang, Y. Wen, and Y. Ni, “Treatment of paper mill wastewater using a composite inorganic coagulant prepared from steel mill waste pickling liquor,” Sep. Purif. Technol., vol. 209, pp. 238–245, 2019, doi: https://doi.org/10.1016/j.seppur.2018.07.049.
[29] J. Chen et al., “High-efficiency extraction of aluminum from low-grade kaolin via a novel low-temperature activation method for the preparation of poly-aluminum-ferric-sulfate coagulant,” J. Clean. Prod., vol. 257, p. 120399, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.120399.
[30] M. Xue, B. Gao, R. Li, and J. Sun, “Aluminum formate (AF): Synthesis, characterization and application in dye wastewater treatment,” J. Environ. Sci., vol. 74, pp. 95–106, 2018, doi: https://doi.org/10.1016/j.jes.2018.02.013.
[31] W. Lemlikchi, S. Khaldi, M. O. Mecherri, H. Lounici, and N. Drouiche, “Degradation of Disperse Red 167 Azo Dye by Bipolar Electrocoagulation,” Sep. Sci. Technol., vol. 47, no. 11, pp. 1682–1688, 2012, doi: 10.1080/01496395.2011.647374.
[32] M. A. Ahangarnokolaei, H. Ganjidoust, and B. Ayati, “Optimization of parameters of electrocoagulation/ flotation process for removal of acid red 14 with mesh stainless steel electrodes,” J. Water Reuse Desalin., vol. 8, no. 2, pp. 278–292, 2018, doi: 10.2166/wrd.2017.091.
[33] N. S. Graça, A. M. Ribeiro, and A. E. Rodrigues, “Modeling the electrocoagulation process for the treatment of contaminated water,” Chem. Eng. Sci., vol. 197, 2019, doi: 10.1016/j.ces.2018.12.038.
[34] J. Behin, N. Farhadian, M. Ahmadi, and M. Parvizi, “Ozone assisted electrocoagulation in a rectangular internal-loop airlift reactor: Application to decolorization of acid dye,” J. Water Process Eng., vol. 8, pp. 171–178, 2015, doi: 10.1016/j.jwpe.2015.10.003.
[35] D. Syam Babu, T. S. Anantha Singh, P. V. Nidheesh, and M. Suresh Kumar, “Industrial wastewater treatment by electrocoagulation process,” Sep. Sci. Technol., vol. 00, no. 00, pp. 1–33, 2019, doi: 10.1080/01496395.2019.1671866.
[36] Y. Yavuz and R. Shahbazi, “Anodic oxidation of Reactive Black 5 dye using boron doped diamond anodes in a bipolar trickle tower reactor,” Sep. Purif. Technol., vol. 85, pp. 130–136, 2012, doi: https://doi.org/10.1016/j.seppur.2011.10.001.
[37] D. G. Bassyouni, H. A. Hamad, E. S. Z. El-Ashtoukhy, N. K. Amin, and M. M. A. El-Latif, “Comparative performance of anodic oxidation and electrocoagulation as clean processes for electrocatalytic degradation of diazo dye Acid Brown 14 in aqueous medium,” J. Hazard. Mater., vol. 335, pp. 178–187, 2017, doi: 10.1016/j.jhazmat.2017.04.045.
[38] J. Behin, N. Farhadian, M. Ahmadi, and M. Parvizi, “Ozone assisted electrocoagulation in a rectangular internal-loop airlift reactor: Application to decolorization of acid dye,” J. Water Process Eng., vol. 8, pp. 171–178, 2015, doi: https://doi.org/10.1016/j.jwpe.2015.10.003.
[39] J. Vidal, L. Villegas, J. M. Peralta-Hernández, and R. Salazar González, “Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode,” J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng., vol. 51, no. 4, pp. 289–296, 2016, doi: 10.1080/10934529.2015.1109385.
[40] R. Keyikoglu, O. T. Can, A. Aygun, and A. Tek, “Comparison of the effects of various supporting electrolytes on the treatment of a dye solution by electrocoagulation process,” Colloids Interface Sci. Commun., vol. 33, no. September, p. 100210, 2019, doi: 10.1016/j.colcom.2019.100210.
[41] E. do Vale-Júnior, D. R. da Silva, A. S. Fajardo, and C. A. Martínez-Huitle, “Treatment of an azo dye effluent by peroxi-coagulation and its comparison to traditional electrochemical advanced processes,” Chemosphere, vol. 204, pp. 548–555, 2018, doi: https://doi.org/10.1016/j.chemosphere.2018.04.007.
[42] E.-S. Z. El-Ashtoukhy, N. K. Amin, M. M. Abd El-Latif, D. G. Bassyouni, and H. A. Hamad, “New insights into the anodic oxidation and electrocoagulation using a self-gas stirred reactor: A comparative study for synthetic C.I Reactive Violet 2 wastewater,” J. Clean. Prod., vol. 167, pp. 432–446, 2017, doi: https://doi.org/10.1016/j.jclepro.2017.08.174.
[43] R. Khosravi, S. Hazrati, and M. Fazlzadeh, “Decolorization of AR18 dye solution by electrocoagulation: sludge production and electrode loss in different current densities,” Desalin. Water Treat., vol. 57, no. 31, pp. 14656–14664, 2016, doi: 10.1080/19443994.2015.1063092.
[44] S. Zodi, B. Merzouk, O. Potier, F. Lapicque, and J.-P. Leclerc, “Direct red 81 dye removal by a continuous flow electrocoagulation/flotation reactor,” Sep. Purif. Technol., vol. 108, pp. 215–222, 2013, doi: https://doi.org/10.1016/j.seppur.2013.01.052.
[45] E. Bazrafshan, M. R. Alipour, and A. H. Mahvi, “Textile wastewater treatment by application of combined chemical coagulation, electrocoagulation, and adsorption processes,” Desalin. Water Treat., vol. 57, no. 20, pp. 9203–9215, 2016, doi: 10.1080/19443994.2015.1027960.
[46] F. Özyonar, Ö. Gökkuş, and M. Sabuni, “Removal of disperse and reactive dyes from aqueous solutions using ultrasound-assisted electrocoagulation,” Chemosphere, vol. 258, 2020, doi: 10.1016/j.chemosphere.2020.127325.
[47] A. Akhtar, Z. Aslam, A. Asghar, M. M. Bello, and A. A. A. Raman, “Electrocoagulation of Congo Red dye-containing wastewater: Optimization of operational parameters and process mechanism,” J. Environ. Chem. Eng., vol. 8, no. 5, p. 104055, 2020, doi: 10.1016/j.jece.2020.104055.
[48] G. K. Mariah and K. S. Pak, “Removal of brilliant green dye from aqueous solution by electrocoagulation using response surface methodology,” Mater. Today Proc., vol. 20, no. xxxx, pp. 488–492, 2020, doi: 10.1016/j.matpr.2019.09.175.
[49] K. Hendaoui, F. Ayari, I. Ben Rayana, R. Ben Amar, F. Darragi, and M. Trabelsi-Ayadi, “Real indigo dyeing effluent decontamination using continuous electrocoagulation cell: Study and optimization using Response Surface Methodology,” Process Saf. Environ. Prot., vol. 116, pp. 578–589, 2018, doi: 10.1016/j.psep.2018.03.007.
[50] N. Nippatla and L. Philip, “Electrocoagulation-floatation assisted pulsed power plasma technology for the complete mineralization of potentially toxic dyes and real textile wastewater,” Process Saf. Environ. Prot., vol. 125, pp. 143–156, 2019, doi: 10.1016/j.psep.2019.03.012.
[51] S. M. Hosseinifard, M. A. Aroon, and B. Dahrazma, “Application of PVDF/HDTMA-modified Clinoptilolite Nanocomposite Membranes in Removal of Reactive Dye from Aqueous Solution,” Sep. Purif. Technol., p. 117294, 2020, doi: https://doi.org/10.1016/j.seppur.2020.117294.
[52] S. Irki, D. Ghernaout, and M. W. Naceur, “Decolourization of methyl orange (MO) by electrocoagulation (EC) using iron electrodes under a magnetic field (MF),” Desalin. Water Treat., vol. 79, pp. 368–377, 2017, doi: 10.5004/dwt.2017.20797.
[53] E.-S. Z. El-Ashtoukhy, N. K. Amin, and O. Abdelwahab, “Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent,” Desalination, vol. 223, no. 1, pp. 162–173, 2008, doi: https://doi.org/10.1016/j.desal.2007.01.206.
[54] E. Pajootan, M. Arami, and N. M. Mahmoodi, “Binary system dye removal by electrocoagulation from synthetic and real colored wastewaters,” J. Taiwan Inst. Chem. Eng., vol. 43, no. 2, pp. 282–290, 2012, doi: https://doi.org/10.1016/j.jtice.2011.10.014.
[55] B. Merzouk, B. Gourich, K. Madani, C. Vial, and A. Sekki, “Removal of a disperse red dye from synthetic wastewater by chemical coagulation and continuous electrocoagulation. A comparative study,” Desalination, vol. 272, no. 1–3, pp. 246–253, 2011, doi: 10.1016/j.desal.2011.01.029.
[56] G. Azarian, D. Nematollahi, A. R. Rahmani, K. Godini, M. Bazdar, and H. Zolghadrnasab, “Monopolar Electro-Coagulation Process for Azo Dye C. I. Acid Red 18 Removal from Aqueous Solutions,” Avicenna J. Environ. Heal. Eng., vol. 1, no. 1, 2014, doi: 10.17795/ajehe-354.
[57] A. Othmani, A. Kesraoui, HaneneAkrout, I. Elaissaoui, and M. Seffen, “Coupling anodic oxidation, biosorption and alternating current as alternative for wastewater purification,” Chemosphere, vol. 249, p. 126480, 2020, doi: https://doi.org/10.1016/j.chemosphere.2020.126480.
[58] B. Naraghi, M. M. Baneshi, R. Amiri, A. Dorost, and H. Biglari, “Removal of Reactive Black 5 dye from aqueous solutions by coupled electrocoagulation and bio-adsorbent process,” Electron. Physician, vol. 10, no. 7, pp. 7086–7094, 2018, doi: 10.19082/7086.
[59] P. Kalivel, R. P. Singh, S. Kavitha, D. Padmanabhan, S. kumar Krishnan, and J. Palanichamy, “Elucidation of electrocoagulation mechanism in the removal of Blue SI dye from aqueous solution using Al-Al, Cu-Cu electrodes - A comparative study,” Ecotoxicol. Environ. Saf., vol. 201, no. June, p. 110858, 2020, doi: 10.1016/j.ecoenv.2020.110858.

Downloads

Published

2020-07-17

How to Cite

Singh, S., & Ransingh, A. (2020). Coagulation and Electrocoagulation Process for Dye Removal fromTextile Wastewater: A Review. CSVTU Research Journal, 9(01), 29–41. https://doi.org/10.30732/RJET.20200901005