Production, purification and characterization of Inulinase from fungus of dahlia rhizosphere

  • Shaloo Verma Department of Biotechnology, School of Bio-Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab
  • Ratna Prabha Chhattisgarh Swami Vivekanand Technical University, Bhilai
  • Anand Mohan Department of Biotechnology, School of Bio-Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, INDIA
Keywords: Inulinase, Rhizospheric soil, Fusarium oxysporum, Aspergillus sp., Enzyme activity

Abstract

Inulinase and its studies are of immense importance in the present scenario. The use of microbial inulinases is suggested as a very potential  approach, however, for obtaining inulinase in sufficient quantity from microbes, particularly fungii, optimization of the growth parameters  is essential. The current study is focused over extraction of inulinase from fungal strains isolated from rhizospheric soil of dahlia plant and optimization of growth parameters. In a total of ten isolates, two organisms Fusarium oxysporum and Aspergillus sp. were identified as efficient inulinase producers. The optimum incubation time, temperature and pH of these organisms were found to be 40 min, 65°C at 6.5 pH and 30 min, 50°C at 6.5 pH respectively. Inulin was identified as appropriate carbon source for these microbes. Thin layer chromatography validated the presence of hydrolysis product via the  action of inulinase on inulin into fructose unit. The highest enzyme activity and Specific activity was obtained from Aspergillus spp. for 20% fractionate was 1.81U/ml and 2.288U/mg, for 40% fractionate was 0.735U/ml and 1.047U/mg and for 60% fractionate was 3.74U/ml and 12.47U/mg respectively at the optimized condition. DEAE Sephadex A 50 Ion exchange column chromatography show that the fifth fraction of 20% fractionate had shown the maximum enzyme activity.  The molecular weight of this enzyme was estimated at 66±2kDa and 43±2kDa using SDS-PAGE after ammonium sulphate precipitation, dialysis and chromatography analysis which showed exo-inulinase type.

References

1. Vandamme, E. J. and Derycke, D. G., 1983. Microbial inulinases: fermentation process, properties, and applications. Advances in Applied Microbiology. 29:139–176.
2. Claessens, G.; Van Laere, A. and De Proft, M. 1990. Purification and properties of an inulinase from chicory roots (Chicorium intybus). J. Plant Physiol. 136: 35-39.
3. Henson, C. 1989. Purification and properties of barley stem fructan exohydrolase. J. Plant Physiol. 134: 186-191.
4. Jing, W.; Zhengyu, J.; Bo, J. and Augustine, A. 2002. Production and separation of exo- and endoinulinase from Aspergillus ficuum. Process Biochemistry. 00: 1-7.
5. Neagu B. C., Bahrim, G., 2011. Inulinases - A Versatile Tool for Biotechnology. Innovative Romanian Food Biotechnology. Sep, 9, 1-11.
6. Nakamura, T.; Nagatomo, Y.; Hamada, S.; Nishino, Y and Ohta, K. 1994. Occurence of two forms of extracellular endoinulinase from Aspergillus niger mutant 817. J. Ferment. Bioeng. 78: 134-139.
7. Silva M. F., Rigo D., Mossi V., Dallago R M., Henrick P., Kuhn G. O, Rosa C. D., Oliveira D., Oliveria J. V. and Treichel H., 2013. Evaluation of enzymatic activity of commercial inulinase from Aspergillus niger immobilized in polyurethane foam. Food and Bioproducts Processing, 91: 54-59.
8. De Roover, J.; Van Laere, A.; De Winter, M.; Timmermans, J.W. and Van den Ende, W. 1999. Purification and properties of a second fructan exohydrolases from the roots of Cichorium intybus. Physiologia planturum. 106: 28-34.
9. Hirayama, M.; Sumi, N.; Hidaka, H. 1989, Purification and properties of a fructooligosaccharide producing fructofuranosidase from Aspersillus niger ATCC 20611. Agric Biol Chem. 53: 667–73.
10. Bonnett, G.D.; Sims, I.M.; St John J.A. and Simpson, R.J. 1994. Purification and characterization of fructans with β-2.1- and β-2.6-glycosidic linkages suitable for enzymestudies. New Phytol. 127: 261-269.
11. MacCabe, A.P.; Orejas, M.; Tamayo, E.N.; Villaneuva, A. and Ramon, D. 2002. Improving extracellular production of food-use enzymes from Aspergillus nidulans. Journal of Biotechnology. 96: 43-54.
12. de Souza-Motta, C.M., de Queiroz Cavalcanti M.A., Porto, A.L.F., Moreira, K.A., de Lima Filho, J.L., 2005. Aspergillus niveus Blochwitz 4128URM: New source for inulinase production. Braz Arch BiolTechn 48: 343-50
13. BurkertII, J. F. M.; KalilI, S. J.; FilhoII, F. M.; RodriguesII, M. I. 2006. Parameters optimization for enzymatic assays using experimental design. Braz. J. Chem. Eng. 23 (2).
14. Allais, J. J. and Baratti, J. C. 1986. Isolation and characterization of bacterial strains with inulinase activity. Appl. Environ. Microbiol. 53: 1086-1090.
15. Gill, P.K.; Manhas, R.K. and Singh, P. 2006. Comparative analysis of thermostability of extracellular inulinase activity from Aspergillus fumigatus with commercially available (Novozyme) inulinase, Bioresour. Technol. 97: 355–358.
16. Pawan, G.L.S.; Birch, G.G. and Green, L.F. 1973. Fructose in: Molecular Structure and Function of Food Carbohydrates. Applied Science Publishers, London, UK. 65–80.
17. Wang, J. M; Zhang, T.; Chi, Z.; Liu, G. L.; Chi, Z. M. 2011. 18S rDNA integration of the exo-inulinase gene into chromosomes of the high ethanol producing yeast Saccharomyces sp. W0 for direct conversion of inulin to bioethanol, Biomass and Bioenergy, 35: 3032 – 3039.
18. Kochhar, A.; Kaur, N and Gupta, A. K. 1997. Inulinase from Aspergillus versicolor: A potent enzyme for production of fructose from inulin. J.S.I.R. 56: 721-726.
19. Allais, J. J.; Hoyos-Lopez, G. S.; Kammoun, P.; and Baratti, J. C. (1987), Isolation and characterization of thermophilic bacterial strains with inulinase activity. Appl. Environ. Microbiol. 53: 942-947.
20. [20] Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determoination of reducing sugar, J.Anal. Chem. 31426-428.
21. Lowry, O. H.; Rosebrough,. N. J.; 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem., 193: 265-275.
22. Laemmli, U. K. 1970. Cleaveage of Structural protein during the assembly of head of Bacteriophage T4. Nature. 227: 680-685.
23. Zhao, C. H.; Zhang, T.; Li, M.; Chi, Z. M. 2010. Single cell oil production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a. Process Biochem; 45: 1121-1126.
24. Saber, W. I. A.; El-Naggar, N. E. 2009. Optimization of fermentation conditions for the biosynthesis of inulinase by the new source; Aspergillus tamarii and hydrolysis of some inulin containing agrowastes. Biotechnology, 8 (4), 425–433.
25. Gern, R. M. M.; Furlan, S. A.; Ninow, J. L.; Jonas, R. 2001. Screening for microorganisms that produce only endo-inulinase. Appl. Microbiol. Biotechnol. 55: 632–635.
26. Basso, A., Spizzo, P., Ferrario, V., Knapic, L., Savko, N., Braiuca, P. Gardossi, L. 2009. Endo‐and exo‐inulinases: Enzyme‐substrate interaction and rational immobilization. Biotechnology Progress, 26(2), 397-405.
27. Skowronek, M. and Fiedurek, J. 2004. Extracellular Endoinulinase from A. niger, Food Technol. Biotechnol. 44 (1): 53–58.
28. Nakamura, T., Ogata, Y., Shitara, A., Nakamura, A., and Ohta, K. 1995. Continous production of fructose syrups from inulin by immobilized inulinase from Aspergillus niger mutant 817. J. Ferment. Bioeng. 80: 164-169.
Published
2018-05-04
How to Cite
Verma, S., Prabha, R., & Mohan, A. (2018). Production, purification and characterization of Inulinase from fungus of dahlia rhizosphere. CSVTU International Journal of Biotechnology, Bioinformatics and Biomedical, 3(1), 15-24. https://doi.org/https://doi.org/10.30732/ijbbb.20180301003
Section
Articles