Biopesticides: An Introduction and their mode of action

Authors

  • Ratna Prabha Chhattisgarh Swami Vivekanand Technical University, Bhilai, India
  • Ashish Patel Sub-DIC Bioinformatics, National Institute of Technology Raipur Chhattisgarh, India
  • Kshitiz Varma Chhattisgarh Swami Vivekanand Technical University, Bhilai, India
  • M. K. Verma Chhattisgarh Swami Vivekanand Technical University, Bhilai, India

DOI:

https://doi.org/10.30732/ijbbb.20160103003

Keywords:

Pesticides, Biopesticides, Antibiosis, Biocontrol

Abstract

Traditional agricultural system involves large scale application of various chemical like fertilizers and pesticides for obtaining constant high yields. Though, alternatives are required for this system owing to the concerns related to environmental protection and human health issues. Also, there is a decline in the availability and efficiency of synthetic chemical pesticides as a result of novel legislation and the development of resistance in pest communities. Thus, other pest management strategies are needed. Biopesticides represents a very good alternative to traditional pesticides. They are pest management agents derived from living microbes or natural products. They promise potential roles in pest management and are widely applied across the globe. In this mini-review, brief introduction is provided for biopesticides followed by their different mode of interaction and their future prospective.

References

[1] Wahab, S., (2009). Biotechnological approaches in the management of plant pests, diseases and weeds for Sustainable Agriculture. J. Biopesticides, 2, 115-134.
[2] Pimentel, D. (2009). Pesticides and pest control. In Integrated pest management: innovation-development process 83-87. Springer Netherlands.
[3] Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisc Toxicol, 2(1), 1–12.
[4] Sirvi, S., Jat, L. A., Choudhary, H. R., Jat, N., Tiwari, V. K., & Singh, N. (2013). Popular Kheti. Compatibility of Bio-agents with Chemical Pesticides: An Innovative Approach in Insect-Pest Management. 1(1).
[5] Wheeler, W. B. (2002). Role of Research and Regulation in 50 Years of Pest Management in Agriculture. J Agric Food Chem, 50, 4151−4155.
[6] Sankaram, A. (1999). Integrated pest management: Looking back and forward. CURRENT SCIENCE-BANGALORE-, 77, 26-32.
[7] Van Emden and Service 2004)
[8] Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International journal of environmental research and public health, 8(5), 1402-1419.
[9] Kochhar, S. R., & Urkude, R. (2014). Perspective on pesticide residues in food and environment and its Regulation in Crop Protection. IOSR Journal of Applied Chemistry (IOSR-JAC), 40-42.
[10] Bale, J. S., Van Lenteren, J. C., & Bigler, F. (2008). Biological control and sustainable food production. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1492), 761-776.
[11] Gilligan, C. A. (2008). Sustainable agriculture and plant diseases: an epidemiological perspective. Philos Trans R Soc Lond B Biol Sci, 363(1492), 741–759.
[12] Mota, M. S., Gomes, C. B., Júnior, I. T. S., & Moura, A. B. (2017). Bacterial selection for biological control of plant disease: criterion determination and validation. Brazilian Journal of Microbiology, 48(1), 62-70.
[13] Nega, A. (2014). Review on concepts in biological control of plant pathogens. Journal of Biology, Agriculture and Healthcare, 4(27), 33-54.
[14] Joshi, S. R. (2006). Biopesticides: A Biotechnological Approach. 12.
[15] Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc Lond B Biol Sci, 366(1573), 1987–1998.
[16] Gatto, M. P., Cabella, R., & Gherardi M. (2016). Climate change: the potential impact on occupational exposure to pesticides. Ann Ist Super Sanità, 52(3), 374-385.
[17] Kumar S (2015) Biopesticide: An Environment Friendly Pest Management Strategy. J Biofertil Biopestici 6:e127. doi:10.4172/2155-6202.1000e127.
[18] Dahlin, B. A. (2009). Botanical pesticides: a part of sustainable agriculture in Babati District Tanzania.
[19] El-Wakeil, N. E. (2013). Botanical Pesticides and Their Mode of Action. Gesunde Pflanzen, 65(4), 125–149.
[20] Sharma, S., & Malik, P. (2012). Biopestcides: Types and Applications. International Journal of Advances in Pharmacy, Biology and Chemistry (IJAPBC), 1(4), 2277-4688.
[21] Usta, C. (2013). Microorganisms in biological pest control—a review (bacterial toxin application and effect of environmental factors). Current Progress in Biological Research, Eds., Marina Silva-Opps, InTech Publishers, 287-317.
[22] Baker, K. F., & Cook, R. J. (1974). Biological Control of Plant Pathogens. Am Phytopathol Soc, St Paul, M., N., 433.
[23] Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol, 3(4), 307-19.
[24] Baehler, E., de Werra, P., Wick, L. Y., Péchy-Tarr, M., Mathys, S., Maurhofer, M., & Keel, C. (2006). Two novel MvaT-like global regulators control exoproduct formation and biocontrol activity in root-associated Pseudomonas fluorescens CHA0. Molecular plant-microbe interactions, 19(3), 313-329.
[25] Dubuis, C., Keel, C., & Haas, D. (2007). Dialogues of root-colonizing biocontrol pseudomonads. Eur J Plant Pathol, 119, 311–328.
[26] Bloemberg, G. V., & Lugtenberg, B. J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current opinion in plant biology, 4(4), 343-350.
[27] Walsh, U. F., Morrissey, J. P., & O’Gara, F. (2001). Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol, 12, 289–295.
[28] Morrissey, J. P., Abbas, A., Mark, L., Cullinane, M., & O’Gara, F. (2004). Biosynthesis of antifungal metabolites by biocontrol strains of Pseudomonas. The Pseudomonads, 3, 635–670, Ramos, J. L. ed, Kluwer Press, Dordrecht.
[29] Chin-A-Woeng, T. F., Bloemberg, G. V., Mulders, I. H., Dekkers, L. C., & Lugtenberg, B. J. (2000). Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Molecular plant-microbe interactions, 13(12), 1340-1345.
[30] Bakker, P. A., Pieterse, C. M., & Van Loon, L. C. (2007). Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology, 97(2), 239-243. Bakker, P. A., Weisbeek, P. J., & Schippers, B. (1988). Siderophore production by plant growth‐promoting pseudomonas SPP. Journal of plant nutrition, 11(6-11), 925-933.
[31] Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied microbiology and biotechnology, 84(1), 11-18.
[32] Saraf, M., Pandya, U., & Thakkar, A. (2014). Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiological Research, 169(1), 18–29.
[33] Raaijmakers, J. M., Vlami, M., & de Souza, J. T. (2002). Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek, 81, 537-547.
[34] Kamilova, F., Validov, S., Azarova, T., Mulders, I., & Lugtenberg, B. (2005). Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environmental Microbiology, 7(11), 1809-1817.
[35] Preston, G. M. (2004). Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond B Biol Sci, 359(1446), 907-18.
[36] Sharma, A., Diwevidi, V. D., Singh, S., Pawar, K. K., Jerman, M., Singh, L. B., Singh, S., & Srivastawa, D. (2013). Biological Control and its Important in Agriculture. International Journal of Biotechnology and Bioengineering Research, 4(3), 175-180.
[37] Neilands, J. B., & Leong, S. A. (1986). Siderophores in relation to plant growth and disease. Annu Rev Plant Physiol, 37, 187–208.
[38] Loper, J. E., & Buyer, J. S. (1991). Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact, 4, 5–13.
[39] Ishimaru, C. A., & Loper, J. E. (1993). Biochemical and genetic analysis of siderophores produced by plant-associated Pseudomonas and Erwinia species. In: Iron chelation in plants and soil microorganisms. Barton, L. L., & Hemming, B. C. Eds, Academic Press, San Diego.
[40] Jurkevitch, E., Hadar, Y., & Chen, Y. (1992). Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl Environ Microbiol, 58, 119–124.
[41] Mirleau, P., Delorme, S., Philippot, L., Meyer, J. M., Mazurier, S., & Lemanceau, P. (2000). Fitness in soil and rhizosphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake. FEMS Microbiol Ecol, 34, 35–44.
[42] Meyer, J. M., Azelvandre, P., & Georges, C. (1992). Iron metabolism in Pseudomonas: salicylic acid, a siderophore of Pseudomonas fluorescens CHAO. Biofactors, 4, 23–27.
[43] Visca, P., Ciervo, A., Sanfilippo, V., & Orsi, N. (1993). Iron-regulated salicylate synthesis by Pseudomonas spp. J Gen Microbiol, 139, 1995–2001.
[44] Anthoni, U., Christophersen, C., Nielsen, P. H., Gram, L., & Petersen, B. O. (1995). Pseudomonine, an isoxazolidone with siderophoric activity from Pseudomonas fluorescens AH2 isolated from Lake Victorian Nile perch. Journal of Natural Products, 58(11), 1786-1789.
[45] Leeman, M., Den Ouden, F. M., Van Pelt, J. A., Dirkx, F. P. M., Steijl, H., Bakker, P. A. H. M., & Schippers, B. (1996). Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology, 86, 149–155.
[46] Bangera, M. G., & Thomashow, L. S. (1999). Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2, 4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. Journal of Bacteriology, 181(10), 3155-3163.
[47] Notz, R., Maurhofer, M., Schnider-Keel, U., Duffy, B., Haas, D., & Défago, G. (2001). Biotic factors affecting expression of the 2, 4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology, 91(9), 873-881.
[48] Notz, R., Maurhofer, M., Dubach, H., Haas, D., & Defago, G., (2002). Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Appl Environ Microbiol, 68, 2229–2235.
[49] Schouten, A., Van den Berg, G., Edel-Hermann, V., Steinberg, C., Gautheron, N., Alabouvette, C., de Vos, C. H., Lemanceau, P., & Raaijmakers, J. M. (2004). Defense responses of Fusarium oxysporum to 2,4-diacetylphloroglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens. Mol Plant Microbe Interact, 17, 1201–1211.
[50] Schnider-Keel, U., Seematter, A., Maurhofer, M., Blumer, C., Duffy, B., Gigot-Bonnefoy, C., Reimmann, C., Notz, R., Défago, G., Haas, D., & Keel, C. (2000). Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol, 182(5), 1215-25.
[51] Haichar, F. E. Z., Fochesato, S., & Achouak, W. (2013). Host plant specific control of 2, 4-diacetylphloroglucinol production in the rhizosphere. Agronomy, 3(4), 621-631.
[52] Van Loon, L. C., Bakker, P. A. H. M., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual review of phytopathology, 36(1), 453-483.
[53] (McSpadden and Weller, 2001).
[54] Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens 1. Annual review of phytopathology, 40(1), 309-348.
[55] Benhamou, N., & Nicole, M. (1999). Cell biology of plant immunization against microbial infection: the potential of induced resistance in controlling plant diseases. Plant Physiology and Biochemistry, 37(10), 703-719.
[56] Kessler, A., & Baldwin, I. T. (2002). Plant responses to insect herbivory: The emerging molecular analysis. Annu Rev, Plant Biol, 53, 299–328.
[57] McDowell, J. M., & Dangl, J. L. (2000). Signal transduction in the plant immune response. Trends Biol. Sci. 25, 79–82.
[58] Walling, L. L. (2000). The myriad plant responses to herbivores. J Plant Growth Regul, 19, 195–216.
[59] Raaijmakers, J. M., De Bruijn, I., & De Kock, M. J. (2006). Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant Microbe Interact, 19, 699–710.
[60] De Meyer, G., & Ho¨fte, M. (1997). Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology, 87, 588–593.
[61] Sticher, L. B., Mauch-Mani, & Me´traux, J. P. (1997). Systemic acquired resistance. Annu Rev, Phytopathol, 35, 235–270.
[62] Audenaert, K., Pattery, T., Cornelis, P., & Höfte, M. (2002). Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Molecular Plant-Microbe Interactions, 15(11), 1147-1156.
[63] Ran, L. X., Bakker, L. C., & Van Loon, P. A. H. M. (2005). No role for bacterially produced salicylic acid in rhizobacterial induction of systemic resistance in Arabidopsis. Phytopathology, 95, 1349–1355.
[64] Mercado-Blanco J, Van Der Drift KMGM, Olsson PE, Thomas-Oates JE, Van Loon LC, Bakker PAHM (2001) Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183 1909–1920.
[65] Pieterse, C. M. L., Van Wees, S. C., Hoffland, E., Van Pelt, J. A., & Van Loon, L. C. (1996). Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. The Plant Cell, 8(8), 1225-1237.
[66] Pieterse, C. M. J., Van Wees, S. C. M., Van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J., & Van Loon, L. C. (1998). A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell, 10, 1571–1580.
[67] Yan, Z., Reddy, M. S., Yyu, C. M., McInroy, J. A., Wilson, M., & Kloepper, J. W. (2002). Induced systemic protection against tomato late blight by plant growth-promoting rhizobacteria. Phytopathology, 92, 1329–1333.
[68] Handelsman, J., & Parke, J. L. (1989). Mechanisms of biocontrol of soilborne plant pathogens. Plant-microbe interactions (USA).
[69] Ahanger, R., Bhatand, H. A., & Dar, N. A. (2014). Biocontrol agents and their mechanism in plant disease management. Sci Acta Xaver, 5, 47-58.
[70] Whipps, J. (2001). Microbial interactions and biocontrol in the rhizosphere. J Exp Bot, 52, 487–511.
[71] Wheatley, R. E. (2002). The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek, 81, 357–364.
[72] Adams, P. B. (1990). The potential of mycoparasites for biological control of plant diseases. Annual review of phytopathology, 28(1), 59-72.
[73] Montesinos, E. (2003). Development, registration and commercialization of microbial pesticides for plant protection. Int Microbiol, 6, 245–252.

Downloads

Published

2016-12-30

How to Cite

Prabha, R., Patel, A., Varma, K., & Verma, M. K. (2016). Biopesticides: An Introduction and their mode of action. CSVTU International Journal of Biotechnology, Bioinformatics and Biomedical, 1(3), 50–60. https://doi.org/10.30732/ijbbb.20160103003

Issue

Section

Review Article

Most read articles by the same author(s)