State-Of-The-Art in Heat Addition during the Friction Stir Welding (FSW) Process by FSW Tool

Authors

  • Sharda Pratap Shrivas Chhattisgarh Swami Vivekanand Technical University, Bhilai-491107, Chhattisgarh
  • G. K. Agrawal Mechanical Engineering Department, GEC Bilaspur, Chhattisgarh, India
  • S. Nagpal Mechanical Engineering Department, BIT Durg, Chhattisgarh, India

DOI:

https://doi.org/10.30732/RJET.20200901002

Keywords:

Stir welding, FSW, Welding strength, Temperature

Abstract

Friction stir welding (FSW) is widely used to join different grades of aluminium alloy but for steel material it requires high speed rotation of FSW tool which develops high temperature on tool. This review paper is concerned with the effect of temperature in the FSW process and heat generation by the high speed of rotation on the FSW apparatus. The other parameter has also studied to show the effect on FSW tool in stir welding process. In this work different research papers and their work are presented. The variety of work on stir welding process is discussed by hypothetical analysis on past performance.

References

[1] Thomas WM, Nicholas ED, Needham JC, Murch MG, Templesmith P, Dawes CJ.G.B. Patent application no. 9125978.8; December 1991.
[2]. Jain, R., Kumari, K., Kesharwani, R.K., Kumar, S., Pal, S.K., Singh, S.B., Panda, S.K., Samantaray, A.K., 2015. Friction stir welding: scope and recent developement. In: Davim, P.J. (Ed.), Mordern Manufacturing Engineering. Springer International Publishing, Swizerland, pp. 179–228. https://doi.org/10.1007/978-3-319-20152-8.
[3]. Mendes N, Neto P, Loureiro A, Moreira AP. Machines and control systems for friction stir welding: A review. Materials and Design 2016; 90: 256–65.
[4]. Lienert TJ, Stellwag WL, Grimmett BB, Warke RW. Friction Stir Welding Studies on Mild Steel. Supplement to The Welding Journal, 2003; 82: 1/s-9/s.
[5]. Ouyang, J., Kovacevic R., 2002. Material flow and microstructure in the friction stir butt welds of the same and dissimilar aluminum alloys. Journal of Materials Engineering and Performance, 11(1): p. 51-63.
[6]. Guerra, M., Schmidt, C., McClure, J., Murr, L., Nunes, A., 2002. Flow patterns during friction stir welding. Materials characterization, 49(2): p. 95-101.
[7]. Schmidt, H.N.B., Dickerson, T., Hattel, J.H., 2006. Material flow in butt friction stir welds in AA2024-T3. Acta Materialia, 54(4): p. 1199-1209.
[8]. Al-Moussawi M, Smith AJ, Faraji M, Cater S. Segregation of Mn, Si, Al, and Oxygen During the Friction Stir Welding of DH36 Steel. Metallography, Microstructure and Analysis 2017; 6: 569-76.
[9]. McPherson N.A, Galloway AM, Cater SR, Hambling, SJ. Friction stir welding of thin DH36 steel plate. Sci. Technol. Weld. Join. 2013; 18: 441–50.
[10]. Toumpis A, Gallawi A, Cater S, McPherson N. Development of a process envelope for friction stir welding of DH36 steel—a step change. Mater. Des. 2014; 62: 64–75.
[11]. Camilleri D, Micallef D, Mollicone P. Thermal stresses and distortion developed in mild steel DH36 friction stir-welded plates: an experimental and numerical assessment. J. Therm. Stresses 2015; 38: 485–508.
[12]. Azevedo J, Quintino L, Infante V, Miranda RM. Santos JD. Friction Stir Welding of Shipbuilding Steel with Primer. Soldagem & Inspecao, 2016;21:16-29
[13]. Smith A, Al-Moussawi M, Young AE, Cater S, Faraji M. Modelling of friction stir welding of 304 stainless steel. In European Simulation and Modelling Conference. Univ. of Las Palmas. 2016.
[14]. Avila JA, Ruchert C, Mei PR, Marinho RR, Paes MTP, Ramirez AJ. Fracture toughness assessment at different temperatures and regions within a friction stirred API 5L X80 steel welded plates. Engineering Fracture Mechanics. 2015;147:176-86.
[15]. Prasanthi TN, Sudha C, RavikiranaSS, Kumar NN, JanakiRam GD. Friction welding of mild steel and titanium: Optimization of process parameters and evolution of interface microstructure. Elsevier Materials & Design, 2015; 88: 58-68.
[16]. Lee WB, Yeon YM, Jung SB. Evaluation of the microstructure and mechanical properties of friction stir welded 6005 aluminum alloy. Mater Sci Technol. 2003; 19: 1513–18.
[17]. Azevedo J, Infante V, Quintino L, Santos J. Fatigue behaviour of friction stir welded steel joints. Advanced Materials Research. 2014; 891:1488-93.
[18]. Kusuda, Y. Honda develops robotized FSW technology to weld steel and aluminum and applied it to a mass‐production vehicle. Industrial Robot. An International Journal, 2013; 40(3): 208-212.
[19]. Ananthapadmanaban D, Rao VS, Abraham N, Rao KP. A study of mechanical properties of friction welded mild steel to stainless steel joints. Elsevier Materials & Design. 2009; 30: 2642-46.
[20]. Ramesha R, Dinaharanb I, Kumarc R, Akinlabi ET. Microstructure and mechanical characterization of friction stir welded high strength low alloy steels. Materials Science & Engineering A. 2017;687:39–46.
[21]. Fujii H, Cui L, Maeda M, Nogi K. Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys. Mater Sci Eng A 2006; 419: 25–31.
[22]. Nathan SR, Malarvizhi S, Balasubramanian V, Rao AG. Failure analysis of tungsten based tool materials used in friction stir welding of high strength low alloy steels. Eng. Fail. Anal. 2016; 66: 88–98.
[23]. Sato YS, Urata M, Kokawa H. Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063. Metall Mater Trans A 2002;33:625–35.
[24]. Sekhon S, Kumar H, Sehgal S.Effect Of Tool Pin Profile On Performance Of Friction Stir Welding Of Brass-Copper-Based Butt Welded Joint. International Journal Of Materials Engineering Innovation. 2016; 7: 236-52.
[25]. Motalleb-nejad P, Saeid T, Heidarzadeh A, Darzi K, Ashjari M. Effect of tool pin profile on microstructure and mechanical properties of friction stir welded AZ31B magnesium alloy. Materials & Design. 2014; 59: 221–26.
[26]. Bilgin MB, Meran C. The effect of tool rotational and traverse speed on friction stir weldability of AISI 430 ferritic stainless steels. Mater. Des. 2012; 33: 376–83.
[27]. Ramachandran KK, Murugan N, Shashikumar S. Effect of tool axis offset and geometry of tool pin profile on the characteristics of friction stir welded dissimilar joints of aluminum alloy AA5052 and HSLA steel. Mater. Sci. Eng. A 2015; 639: 219–233.
[28]. Marzbanrad J, Akbari M, Asadi P, Safaee S. Characterization of the influence of tool pin profile on microstructural and mechanical properties of friction stir welding. Metallurgical and Materials Transactions B, 2014; 45: 1887–94.
[29]. Motalleb-nejad P, Saeid T, Heidarzadeh A, Darzi K, Ashjari M. Effect of tool pin profile on microstructure and mechanical properties of friction stir welded AZ31B magnesium alloy. Materials & Design. 2014; 59: 221–26.
[30]. Scialpi A, LAC DF, Cavaliere P. Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy. Mater Design 2007; 28: 1124–29.
[31]. Shojaeefard MH, Khalkhali A, Akbari M, Asadi P. Investigation of friction stir welding tool parameters using FEM and neural network (Proceedings of the Institution of Mechanical Engineers. Part L: Journal of Materials Design and Applications. 2013; 229: 209-17.
[32]. Deepati AK, Kadian AK, Biswas P. Numerical And Experimental Study On Influence Of Tool Plunging Force And Shoulder Size On Thermal History Of Friction Stir Welding. International Journal Of Manufacturing Research. 2015; 10: 64-86.
[33]. Rajakumar S, Muralidharan C, Balasubramanian V.Optimisation And Sensitivity Analysis Of Friction Stir Welding Process And Tool Parameters For Joining Aa1100 Aluminium Alloy. International Journal Of Microstructure And Materials Properties. 2011; 6: 132-56.
[34]. Elangovan K, Balasubramanian V, Valliappan M.Effect Of Welding Speed And Tool Pin Profile On Tensile Properties Of Friction Stir Welded Aa6061 Aluminium Alloy. International Journal Of Microstructure And Materials Properties.2009; 4: 455-75.
[35]. Thimmaraju PK, Arakanti K, Chandra G. Reddy M., Study Of Influence Of Tool Geometry On Material Flow Pattern In Friction Stir Welding Process Using Finite Element Simulation. International Journal of Mechanical And Production Engineering Research And Development (IJMPERD). 2017; 7: 471-78.
[36]. Winiczenko R. Effect of friction welding parameters on the tensile strength and microstructural properties of dissimilar AISI 1020-ASTM A536 joints. Int J Adv Manuf Technol. 2016; 84: 941–955.
[37]. Shubhavardhan RN, Microstructure And Tensile Strength Of Friction Stir Welding Of Al-Cu. International Journal Of Mechanical And Production Engineering Research And Development (IJMPERD), 2015; 5: 41-50,
[38]. Darwins AK, & Satheesh M. Effect Of Friction Stir Welding Processon Mechanical Propertiesand Microstructure Of Ze42 Magnesium Alloy. International Journal Of Mechanical And Production Engineering Research And Development (Ijmperd). 2017; 7: 429-36.
[39]. Rashidi A, Mostafapour A. Influence of tool pin geometry and moving paths of tool on channel formation mechanism in modified friction stir channeling technique. Int J Adv Manuf Technol 2015; 80: 1087–96.
[40]. Liu X, Li LX, He FY, Zhou J, Zhu B, Zhang L. Simulation on dynamic recrystallization behavior of AZ31 magnesium alloy using cellular automaton method coupling Laasraoui–Jonas model. Transactions of Nonferrous Metals Society of China, 2013; 23: 2692–99.
[41]. Nathan SR, Balasubramanian V, Malarvizhi S, Rao AG. An investigation on metallurgical characteristics of tungsten based tool materials used in friction stir welding of naval grade high strength low alloy steels. Int. J. Refract. Met. Hard Mater. 2016; 56: 18–26.
[42]. Asadi P, Givi MKB, Akbar M. Microstructural simulation of friction stir welding using a cellular automaton method: a microstructure prediction of AZ91 magnesium alloy. International Journal of Mechanical and Materials Engineering. 2015;10:1-14.
[43]. Rashidi A, Mostafapour A, Rezazadeh V, Salahi S. Channel formation in modified friction stirs channeling, Appl Mech Mater 2013;302:371–76.
[44]. SantillanaBegon, A, Boom R, Eskin D, Mizukami H, Hanao M. High-Temperature Mechanical Behaviour and Fracture Analysis of Low-Carbon Steel Related to Cracking. Metallurgical and Materials Transactions. 2012; 43: 5048-57.
[45]. Li LX, He FY, Liu X, Lou Y, Zhou J, Duczczyk J. Simulation of the grain structure evolution of a Mg-Al-Ca-based alloy during hot extrusion using the cellular automation method. Key Engineering and Materials, 2012; 491: 264–72.
[46]. Chen CM, Kovacevic R. Finite element modeling of friction stir welding—thermal and thermomechanical analysis. International Journal of Machine Tools & Manufacture 2003; 43: 1319–26.
[47]. Satyavinod L, Harikishore R. Parametric Optimization for Friction Stir Welding of Al6061 Alloy using Taguchi Technique. International Journal of Science and Research (IJSR). 2017; 6: 334-36.
[48]. Suna Y, Fujii H, Takadaa Y, Tsuji N, Nakataa K, Nogi K. Effect of initial grain size on the joint properties of friction stir welded aluminium. Materials Science and Engineering A. 2009; 527: 317–321.
[49]. Singarapu U, Kumar A, Arumalle SM.Influence of tool material and rotational speed on mechanical properties of friction stir welded AZ31B magnesium alloy. Journal of Magnesium and Alloys. 2015; 3: 335-44.

Downloads

Published

2020-07-17

How to Cite

Shrivas, S. P., Agrawal, G. K., & Nagpal, S. (2020). State-Of-The-Art in Heat Addition during the Friction Stir Welding (FSW) Process by FSW Tool. CSVTU Research Journal, 9(01), 06–15. https://doi.org/10.30732/RJET.20200901002