Impact of the industrialization on soil surrounding Sirgitti industrial area in Bilaspur
Abstract
A case study evaluated the impact of cold drink and plastic industries on the soil. Cold drinks industrial wastes are associated with the nutrients, undesirable substance and heavy metals to the soil. High concentrations of these parameters are risky to public health especially when the water flow from these sources is consumed by people for different purpose without any treatment. It has taken extensively study of soil sample in Narmada drinks private limited Sirgitti in Bilaspur district. Many wastes for example rice mill waste, leather industrial waste, plastic waste agrochemical waste and paper industrial waste etc. are discarded as useless in soil which indicate soil pollution. Soil samples were collected from two sampling station in Jan 2022 post-monsoon had been investigated for physicochemical parameters and heavy metals like Zn, Mn, Fe, Na and Mg by standard method as per IS guidelines.
References
. Pulleman, M. M.,Bouma, J., van Essen,E. A. and Meijles, E. W. 2000 “Soil organic matter content as a function of different land use history,” Soil Science Society of America Journal, vol. 64, no. 2, pp. 689–693.
. Barua, P. K., & Bora, P. K. (1975). Fertility status of the soils of North Eastern region. Journal of the North Eastern Council, 1(2), 21-26.
. Wang, B.R., Cai, Z.J., Li, D.C. (2010) Effect of different long-term fertilization on the fertility of red upland soil. Journal of Soil and Water Conservation 24: 85–88.
. Yadav, M. P. Mohd, and Kushwaha, S. P. 2005. “Effect of integrated nutrient management on rice (Oryza sativa)-wheat (Triticum aestivum) cropping system in central plains zone of Uttar Pradesh,” Indian Journal of Agronomy, vol. 50, no. 2, pp. 89–93,
. Blair, N., Faulkner, R., Till, A., Poulton, P. (2006) Long-term management impacts on soil C, N and physical fertility: Part I: Broadbalk experiment. Soil and Tillage Research 91: 30–38.
. Huang, Q. R., Feng, H. U., Huang, S., Hui-Xin, L. I., Ying-Hong, Y. U. A. N., Gen-Xing,
.
. P. A. N., & Zhang, W. J. (2009). Effect of long-term fertilization on organic carbon and nitrogen in a subtropical paddy soil. Pedosphere, 19(6), 727-734.
. Gillman, G.P. and E.A. Sumpter. 1986. Modification to the compulsive exchange method for measuring exchange characteristics of soils. Aust. J. Soil Res. 24:61-66.
. Hendershot, W.H. and M. Duquette. 1986. A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci. Soc. Am. J. 50:605-608.
. Sultani, M. I., Gill, M. A., Anwar, M. M., & Athar, M. (2007). Evaluation of soil physical properties as influenced by various green manuring legumes and phosphorus fertilization under rain fed conditions. International Journal of environmental Science & Technology, 4(1), 109-118.
. Singh, S. R., Zargar, M. Y., Singh, U., & Ishaq, M. (2010). Influence of bio-inoculants and inorganic fertilizers on yield, nutrient balance, microbial dynamics and quality of strawberry (Fragariax ananassa) under rainfed conditions of Kashmir valley. Indian Journal of Agricultural Sciences, 80(4), 275.
. Bowman, R. A., Vigil, M. F., Nielsen, D. C., & Anderson, R. L. (1999). Soil organic matter changes in intensively cropped dryland systems. Soil Science Society of America Journal, 63(1), 186-191.
. Richards L.A. (1986) Diagnosis Improvement of Saline and Alkaline Soil”, vol. 60 of US Department of Agriculture Hand Book, United States Salinity Laboratory Staff.
. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38.
. Black, C. A., Evans, D. D., White, J. L., Ensminger, L. E., Clark, F. E., & Dinauer, R. C. (1965). Methods of soil analysis. Pt. 1. Physical and mineralogical properties, including statistics of measurement and sampling. Pt. 2. Chemical and microbiological properties (No. 631.42 B627). American Society of Agronomy, Madison, WI (EUA).
. Chopra S. L. and Kanwar, J. S., (1986) Analytical Agricultural Chemistry, Kalyani, New Delhi, India.
. Prasad R. N. and Patiram, 1981, Annual Report ICAR Research Complex for North Eastern Hill Region, Meghalaya, India.
. Tiwari, K. N. Fundamental of Soil Science, Indian Society of Soil Science, New Delhi, India, 2003.
. Khattak, R. A., & Hussain, Z. (2007). Evaluation of soil fertility status and nutrition of orchards. Soil & Environment, 26(1), 22-32.
. Subba Rao, A. (1993). Analysis of soils for available major nutrients. Methods of Analysis of Soils, Plants, Waters and Fertilizers. Fertilizer Development and Consultation Organization, New Delhi, 13-35.
. Borah, K. K., Bhuyan, B., & Sarma, H. P. (2009). Variation of bulk density and organic matter in soils of tea garden belt of undivided Darrang district, Assam. Archives of applied science research, 1(2), 159-164.
. Sharma, M., Mishra, B., & Singh, R. (2007). Long-term effects of fertilizers and manure on physical and chemical properties of a mollisol. Journal of the Indian Society of Soil Science, 55(4), 523-524.
. Albaji, M., Landi, A., Boroomand Nasab, S., & Moravej, K. (2008). Land suitability evaluation for surface and drip irrigation in Shavoor Plain Iran. Journal of Applied Sciences, 8(4), 654-659.
. Behera, B., Sankar, G. R., Mohanty, S. K., Pal, A. K., Chary, G. R., Reddy, G. S., & Ramakrishna, Y. S. (2007). Sustainable fertilizer practices for upland rice (Oryza sativa) from permanent manurial trials under subhumid alfisols. Indian Journal of Agronomy, 52(2), 96-101.
. Ackerson JP, Morgan CLS, Ge Y (2017) Penetrometer-mounted VisNIR spectroscopy: Application of EPO-PLS to in situ VisNIR spectra. Geoderma, 286: 131-138. DOI:https://doi.org/10.1016/j.geoderma.2016.10.018.
. Adamchuk VI, Morgan MT, Ess DR (1999) An automated sampling system for measuring soil pH. Transactions of the ASAE, 42(4): 885. DOI: 10.13031/2013.13268.
. Adamchuk VI, Hummel JW, Morgan MT, Upadhyaya SK (2004) On-the-go soil sensors for precision agriculture. Computers and electronics in agriculture, 44(1): 71-91. DOI: https://doi.org/10.1016/j.compag.2004.03.002.
. Adamchuk VI, Lund ED, Sethuramasamyraja B, Morgan MT, Dobermann A, Marx DB (2005) Direct measurement of soil chemical properties on-the-go using ion-selective electrodes. Computers and Electronics in Agriculture, 48(3): 272-294. DOI: https://doi.org/10.1016/j.compag.2005.05.001.
. Adamchuk VI, Morgan MT, Brouder SM (2006) Development of an on-the-go soil pH mapping method: analysis of measurement variability. Applied Engineering Agriculture, 22(3): 335-344. DOI: 10.13031/2013.20450.
. Adamchuk VI, Lund ED, Reed TM, Ferguson RB (2007) Evaluation of an on-the-go technology for soil pH mapping. Precision Agriculture, 8(3): 139-149. DOI: https://doi.org/10.1007/s11119-007-9034-0.
. Adamchuk VI, Viscarra Rossel R (2010) Development of on-the-go proximal soil sensor systems. In Proximal soil sensing, Springer, Dordrecht 15-28p.
. Askari MS, O'Rourke SM, Holden NM (2015) Evaluation of soil quality for agricultural production using visible–near-infrared spectroscopy. Geoderma, 243.
. Ben-Dor E, Banin, A (1995) Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of America Journal, 59(2): 364-372. DOI: 10.2136/sssaj1995.03615995005900020014x.
. Ben-Dor E, Ong C, Lau IC (2015) Reflectance measurements of soils in the laboratory: Standards and protocols. Geoderma, 245: 112-124. DOI: https://doi.org/10.1016/j.geoderma.2015.01.002.
. Benedetto D, Castrignanò A, Rinaldi M, Ruggieri S, Santoro F, Figorito B, Diacono M, Tamborrino R (2013) An approach for delineating homogeneous zones by using multi-sensor data. Geoderma, 199, 117-127. DOI: https://doi.org/10.1016/j.geoderma.2012.08.028.
. Brevik E.C., Fenton, T.E., Lazari A. (2006) Soil electrical conductivity as a function of soil water content and implications for soil mapping. Precision Agric, 7:393-404. DOI: https://doi.org/10.1007/s11119-006-9021-x.
. Brevik E.C., Calzolari C., Miller B.A., Pereira P., Kabala, C., Baumgarten A., Jordán, A., (2016) Soil mapping, classification, and pedologic modeling: History and future directions. Geoderma, 264: 256-274. DOI: https://doi.org/10.1016/j.geoderma.2015.05.017.
. Brock A, Brouder S.M., Blumhoff, G., Hofmann, B.S., (2005) Defining yield-based management zones for corn–soybean rotations. Agronomy Journal, 97(4): 1115–1128. DOI: 10.2134/agronj2004.0220.
. Brooks, F.A., (1952) Atmospheric radiation and its reflection from the ground. Journal of Meteorology, 9(1): 41–52. DOI: https://doi.org/10.1175/1520-0469(1952)009<0041:ARAIRF>2.0.CO;2.
. Carvalho, G.G.A., Santos Jr D., Gomes M.S., Nunes, L.C., Guerra, M.B.B., Krug FJ (2015) Influence of particle size distribution on the analysis of pellets of plant materials by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 105, 130-135. DOI: https://doi.org/10.1016/j.sab.2014.09.001.
. Castilhos, N.D., Melquiades, F.L., Thomaz, E.L., Bastos, R.O. (2015) X-ray fluorescence and gamma-ray spectrometry combined with multivariate analysis for topographic studies in agricultural soil. Applied Radiation and Isotopes, 95: 63-71. DOI: https://doi.org/10.1016/j.apradiso.2014.09.013.
. Castrignanò, A., Wong, M.T.F., Stelluti, M., Benedetto, D., Sollitto, D., (2012) Use of EMI, gamma-ray emission and GPS height as multi-sensor data for soil characterisation. Geoderma, 175: 78-89. DOI: https://doi.org/10.1016/j.geoderma.2012.01.013.
. Cezar, E., Nanni, M.R., Guerrero, C., Silva Junior C.A., Cruciol, L.G.T., Chicati, M.L., Silva, G.F.C. (2019) Organic matter and sand estimates by spectroradiometry: Strategies for the development of models with applicability at a local scale. Geoderma, 340: 224-233. DOI: https://doi.org/10.1016/j.geoderma.2019.01.021.
. Cherubin, M.R., Santi, A.L., Eitelwein, M.T., Ros, C.O., Bisognin, M.B., (2014a) Sampling grids used to characterise the spatial variability of pH, Ca, Mg and V% in Oxisols. Revista Ciência Agronômica, 45(4): 659-672. DOI: http://dx.doi.org/10.1590/S1806-66902014000400004
. Cherubin, M.R., Santi, A.L., Eitelwein, M.T., Menegol, D.R., Da, Ros, CO, Castro Pias OH, Berghetti J (2014b) Eficiência de malhas amostrais utilizadas na caracterização da variabilidade espacial de fósforo e potássio. Ciência Rural, 44(3): 425-432.
. Cherubin, M.R., Santi, A.L., Eitelwein, M.T., Amado, T.J.C., Simon, D.H., Damian, J.M. (2015) Dimensão da malha amostral para caracterização da variabilidade espacial de fósforo e potássio em Latossolo Vermelho. Pesquisa Agropecuária Brasileira, 50(2): 168-177.
. Cho Y, Sudduth K.A., Drummond, S.T. (2017) Profile soil property estimation using a vis-NIR-EC-force probe. Transactions of the ASABE, 60(3): 683-692. DOI: https://doi.org/10.13031/trans.12049.
. Christy, C.D. (2008) Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy. Computers and electronics in agriculture, 61(1): 10-19. DOI: https://doi.org/10.1016/j.compag.2007.02.010.
. Clark R.N., Roush, T.L., (1984) Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research: Solid Earth, 89(B7): 6329-6340. DOI: https://doi.org/10.1029/JB089iB07p06329.