Optimization of Heating Process Parameters of Friction Stir Welding Joint on Aluminium Alloy Aa2024
DOI:
https://doi.org/10.30732/CSVTURJ.20211001004Keywords:
Friction Stir welding (FSW), Aluminum alloy 2024, Tensile Strength, Charpy test.Abstract
In this research, frictions stir welding of aluminum alloy AA2024 and welding with its similar plate having a cross section of 100 x 50 x 5 mm. The work piece is heating with variation of temperature with its variation of holding time and cooled it in water. Heat treated work-piece is welded by friction stir welding process with variation of tool rotation speed and other parameters are constant for all experiment. For experiment design using the selected control parameters are Temperature, holding time and tool rotation speed and the three control parameters each are three levels has been designing the experiment based on L9 Orthogonal Array (OA). After welding, specimen is tested for mechanical properties such as tensile strength and Charpy Test respectively. The results show that Charpy impact test and tensile stress increased with increase the parameter level. The optimum process parameters for the maximum tensile strength and Charpy impact joints are optimized.
References
Aditya, S. K., Majumdar, D., & De, D. (2016). Characterization And Study of Friction Stir Welding of AA6101 Aluminum Alloy. Int. Journal of Engineering Research and Application, 6(5), 57-60.
Chandu, K., Rao, E., Rao, A., & Subrahmanyam, B. (2014). The Strength of Friction Stir Welded Aluminium Alloy 6061. IJRMET, 4(1), 119-122.
Chiteka, K. (2013). Friction Stir Welding/Processing Tool Materials and Selection. International Journal of Engineering Research & Technology (IJERT), 2(11), 8-12.
Devaiah, D., Kishore, K., & Laxminarayana, P. (2017). Effect of Welding Speed on Mechanical Properties of Dissimilar Friction Stir Welded AA5083-H321 and AA6061-T6 Aluminum Alloys. International Journal of Advanced Engineering Research and Science (IJAERS), 4(3), 22-28.
El-Keran, A., Mostafa, R., & Al-Mahdy, R. (2019). Mechanical behaviors of joining AL-Alloys based FSW parameters and welding tool design. International Journal of Scientific & Engineering Research, 10(6), 97-102.
Ghazvinloo, H. R., & Shadfar, N. (2020). Effect of Friction Stir Welding Parameters on the Quality of Al-6%Si Aluminum Alloy Joints. Journal of Materials and Environmental Science, 11(5), 751-758.
Heidarzadeh, A., Khodaverdizadeh, H., Mahmoudi, A., & Nazari, E. (2012). Tensile behavior of friction stir welded AA 6061-T4 aluminum alloy joints. Materials & Design, 37, 166-173, doi.org/10.1016/j.matdes.2011.12.022.
Kumar, P. P., Basha, S., & Kumar, S. (2019). Optimization of Friction Stir Welding process parameters of Aluminium alloy AA7075-T6 by using Taguchi method. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(12), 290-297.
Prasanthi, T. N., Sudha , C., Ravikirana, Sarojaa, S., Naveen Kumar , N., & JanakiRam, G. D. (2015). Friction welding of mild steel and titanium: Optimization of process parameters and evolution of interface microstructure. Materials & Design, 88, 58-68.
Reddy, N. R., & Reddy, G. (2016). FRICTION STIR WELDING OF ALUMINIUM ALLOYS - A REVIEW. International Journal of Mechanical Engineering and Technology, 7(2), 73-80.
Shrivas, S. P., Agrawal, G. K., & Nagpal, S. (2020). State-Of-The-Art in Heat Addition during the Friction Stir Welding (FSW) Process by. CSVTU Research Journal, 9(1), 6-15.
Shrivas, S. P., Agrawal, G. K., & Nagpal, S. (2020). Strength analysis of friction stir welding (FSW) joint under minimise rotation speed of FSW tool. Advanced Materials Letters, 12(5), 1-5.
Shrivas, S. P., Agrawal, G. K., Nagpal, S., Vishvakarma, A. K., & Khandelwal, A. K. (2021). Dissimilar aluminum alloy joint strength is effected by heat addition in friction stir welding (FSW). Materials today Proceedings, doi.org/10.1016/j.matpr.2020.11.639.
Singh, S., Khan, Z. A., & Siddiquee, A. N. (2015). Study On The Effect Of FSW Process Parameters On Joint Quality Of Dissimilar Materials. International Journal of Research in Enginee ring & Advanced Technology, 3(2), 282-298.
Thomas, W. M., Nicholas, E. D., Needham, J. C., & Murch, M. G. (1991, December). Patent No. PCT/GB92/02203.